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Quantization conditions in Bogomolny’s transfer operator method
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National Center for Theoretical Sciences, Physics Division, 101, Section 2 Kuang-Fu Road, Hsinchu 300, Taiwan
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Bogomolny’s transfer operator method plays a significant role in the study of quantum chaos, along with
other well known methods like Gutzwiller’s trace formula and the dynamical zeta function, which generalize
the Einstein-Brillouin-Keller quantization rule from integrable systems to chaotic systems. According to the
theory, the Fredholm determinant of the transfer operator, defined on a Poincare´ section of a classical physical
system, provides a quantization condition to the energy spectrum of the corresponding quantum system. This
study presents two factorization formulas, which relate different quantization conditions defined on different
classical trajectory segments. These explicit relations answer the question of why all these classical quantiza-
tion conditions determine exactly the same energy spectrum of the corresponding quantum systems. As an
example, these formulas are illustrated in the equilateral triangular billiard.
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I. INTRODUCTION

A way to generalize the Wentzel-Kramers-Brillouin an
the Einstein-Brillouin-Keller~EBK! quantization rules from
integrable systems to chaotic~nonintegrable! systems had
been sought for a long time@1#. In the 1950s, without the
motivation of quantum chaos, Selberg derived his fam
trace formula@2#. This formula describes the discrete qua
tum energy spectrum of a free particle on the modular s
face on which the dynamics of the particle’s motion
strongly chaotic@1#. Shortly thereafter, Sinai and Smale@3#
realized that this formula could be interpreted as a sum o
all periodic orbits of the particle motion on the surface. Sin
then, the relation between the energies of a quantum sys
and its classical chaotic dynamics has become much cle
@1#. This relation is essentially involved in many newly d
veloped quantization rules in the last decades. Examples
clude the transfer operator method due to Ruelle@4# on the
modular surface@5–7# and semiclassical methods for gene
physical systems, such as Gutzwiller’s trace formula@8# and
the functional determinant@9#. A common point of all these
methods is that the quantization conditions are establis
from the periodic orbits of the dynamical systems.

Another quantization method based on classical dynam
is the transfer operator method due to Bogomolny@10#. Un-
like other methods, the quantization condition in this meth
is not based on periodic orbits but only on segments of c
tain trajectories in classical dynamics. The freedom of traj
tory choice is such that the quantization conditions in t
method are not unique and, in fact, infinitely many differe
conditions can exist. From a classical perspective, one m
speculate how all these different quantization conditions,
fined on independent classical trajectories, determine exa
the same energy spectrum. This work provides a simple
gument with exact formulas~19! and ~20! to answer this
question. Finally, a numerical test that confirms these form
las on the equilateral triangular quantum billiard is discuss

II. TRANSFER OPERATOR METHOD

Bogomolny’s transfer operator method is briefly intr
duced here. Consider a particle with energyE, moving in
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somek-dimensional physical system,~for examples of vari-
ous systems, see Refs.@11–19#!. Select a Poincare´ section
~PS! S in the configuration space of this system, such t
almost all classical trajectories pass this section. The tran
operatorT(E) is defined semiclassically as the integral o
erator@10#

T~E!c~q!5E
S
T~q,q8,E!c~q8!dq8, ~1!

acting on some functionc(q8) on S. The integral kernel

T~q,q8,E!5 (
class traj

1

~2p i\!(k21)/2
AUdet

]2S~q,q8,E!

]q]q8
U

3exp@ iS~q,q8,E!/\2 inp/2# ~2!

is defined as the sum over all possible classical trajecto
from the initial pointq8PS to the final pointqPS in the
configuration space at energyE. These trajectories canno
have other crossing points throughS betweenq8 and q, in
the sense that they cannot passS in the same direction as
they passq8. For example, selectingS I in Fig. 1~a! as a PS,
the next crossing point after the initial pointq1 is q3, notq8.
The functionS(q,q8,E) in Eq. ~2! is the action of the trajec-
tory from q8 to q at energyE and the Maslov indexn is
related to the number of points, at which semiclassical
proximation is not valid@10#. For a free particle that move

FIG. 1. ~a! On the PSS I, the next crossing point afterq1 is q3

~not q8). Moreover, the transfer operators onS I and S II can be
related by Green functions in Eq.~4!. ~b! The trajectory of the
kernelT3(q1 ,q18) in Eq. ~10! passes throughq18 , qi 1

, qi 2
, andq1.
©2002 The American Physical Society02-1
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in a two-dimensional billiard system, the Maslov index
double the number of reflections of the trajectory at the
liard boundary @10#. The partial derivative
]2S(q,q8,E)/]q]q8 in Eq. ~2! is a square matrix of dimen
sion 2 for k53 and a scalar fork52, where the notation
‘‘det’’ before the derivative can be omitted, e.g., Eq.~22!. In
this approximation, the kernel~2! is unitary and satisfies th
relation

E
S
T~q,q9,E!T~q9,q8,E!dq95T2~q,q8,E!,

where the connection of the trajectories fromq8 to q9 and
from q9 to q must be smooth atq9; that is, the direction of
the incoming trajectory atq9 and the direction of the outgo
ing trajectory atq9 are the same. Moreover,T(q,q8,E) van-
ishes if no trajectory that fulfills this condition exists fromq8
to q at energyE. According to Bogomolny’s theory@10#, in
the semiclassical limit\→0, the zeros of the Fredholm de
terminant

det@12T~E!#50, ~3!

of the transfer operatorT(E) are the energies of the corre
sponding quantum system yielding a quantization conditi

The choice of the PS is arbitrary, as long as almost
trajectories run through this section. Given two sectionsS I

and S II , Ref. @10# argues that the kernelsTI and TII of the
corresponding transfer operatorsT I andT II are related by

TII~q4 ,q2 ,E!5E
S I
E

S I
G43T

I~q3 ,q1 ,E!G21* dq3dq1 , ~4!

in which Gi j 5G(qi ,qj ,E) is the Green function corre
sponding to the transition from a pointqj on S I to a pointqi
on S II at energyE without other crossing points throughS I

or S II in between@Fig. 1~a!#, whereGi j* represents the com
plex conjugate ofGi j . Since the Green function is a unitar
transformation@10#,

E
S
G~q8,q9,E!G~q9,q,E!* dq95d~q82q!, ~5!

T I andT II are similar operators under different bases, and
corresponding determinants in Eq.~3! are identical.

This argument is valid only when the Green functions
Eq. ~4! can be found. However, this condition is not met
general. For example, a trajectory fromq1 could have
crossedS I many times before arriving atq2 if S I andS II are
not close enough. Accordingly, the Green functionG21* in Eq.
~4!, defined on classical trajectories, has more than
crossing point onS I, which contradicts the requirement o
Gi j . Thus, the transfer operators on the new and old sect
are no longer similar operators and their Fredholm deter
nants are in general different functions. From the quant
mechanical perspective, these functions should clearly h
the same zeros, because these zeros correspond to a u
energy spectrum. However, from the classical perspect
the reason why all the zeros of different functions~3! con-
05620
-

.
ll

e

e

ns
i-
m
ve
ique
e,

structed on different PS’s should be exactly identical, is n
trivial. This question can be clarified using the followin
factorization formula.

III. DETERMINANT FACTORIZATION

Consider first a transfer operatorT II defined on some PS
S II5S1øS2, composed of two connected, but nonoverla
ping, subsectionsS1 andS2. The operator~1!, split into two
parts,

T IIc~q!5E
S1

TII~q,q18!c~q18!dq181E
S2

TII~q,q28!c~q28!dq28 ,

~6!

can be expressed as

T IIS c~q1!

c~q2!
D 5S T11 T12

T21 T22
D S c~q1!

c~q2!
D , ~7!

with q1 ,q18PS1 , q2 ,q28PS2, and

Ti j c~qj !ªE
S j

TII~qi ,qj8!c~qj8!dqj8 , i , j P$1, 2%, ~8!

wherec(qj ) is some function defined onS j . Notably, the
integral in Eq.~8! is conventionally defined as an integr
operator by using the notationTi j c(qi)5@Ti j c#(qi), indicat-
ing that @Ti j c# is a function ofqi . The modified notation
Ti j c(qj ) in Eq. ~8! does not refer to a function ofqj . In-
stead, this notation makes it possible to express Eq.~6! as the
matrix equation Eq.~7! and shorten many equations in th
following discussion. As in Eq.~2!, the kernelTII(qi ,qj8) in
Eq. ~8! consists of trajectories fromqj8 to qi without crossing
S1 and S2 in between, in the sense of the crossing po
defined above.

Next, S I5S1 is selected as a new PS with the corr
sponding transfer operatorT I and its kernelTI(q1 ,q18). The
aim is to determine the relation between kernelsTI(q1 ,q18)
andTII(q1 ,q18). Accordingly,TI(q1 ,q18) is written as a sum
over all trajectories fromq18 to q1,

TI~q1 ,q18!5 (
n51

`

Tn~q1 ,q18!, ~9!

where the first termT(q1 ,q18) in the sum is the kerne
TII(q1 ,q18) of T11 in Eq. ~8!, which corresponds to trajecto
ries fromq18 to q1 without crossingS2. For 1,n, the com-
position kernel

Tn~q1 ,q18!ªE
S2

TII~q1 ,qi n21
!TII~qi n21

,qi n22
! . . .

3TII~qi 2
,qi 1

!TII~qi 1
,q18!dqi n21

. . . dqi 1

~10!

corresponds to the trajectories that cross the sectionS2 n
21 times atqi l

PS2 with l 51, . . . ,n21. Figure 1~b! shows
2-2
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an example ofT3(q1 ,q18) with a trajectory that crossesS2

twice. Consequently,TI(q1 ,q18) in Eq. ~9! is related to
TII(q1 ,q18) in Eq. ~8! by

TII~q1 ,q18!1 (
n52

`

Tn~q1 ,q18!5TI~q1 ,q18!. ~11!

Defining a new operatorA with the kernel(n51
` Tn(q1 ,q28),

by replacingq18 in Eq. ~10! by q28 , yields the identity,

(
n51

`

Tn~q1 ,q28!2 (
n52

`

Tn~q1 ,q28!5TII~q1 ,q28!. ~12!

The kernels ofAT21 andAT22 are then, respectively,

E
S2

(
n51

`

Tn~q1 ,q29!T21~q29 ,q18!dq295 (
n52

`

Tn~q1 ,q18!,

~13!

E
S2

(
n51

`

Tn~q1 ,q29!T22~q29 ,q28!dq295 (
n52

`

Tn~q1 ,q28!,

~14!

which consist of trajectories fromq18 , respectively,q28 to q1,
crossingS2 at least once. Using the definition ofAT21 and
AT22 in Eqs. ~13! and ~14!, kernel equations~11! and ~12!
yield the operator equations

T111AT215T I and A~12T22!5T12. ~15!

The necessary and sufficient condition forT II(E) to have
an eigenvalue 1 at someE is

det@12T II~E!#50, ~16!

where, according to Eq.~7!, one has

@12T II~E!#c~q!5S 12T11 2T12

2T21 12T22
D S c~q1!

c~q2!
D . ~17!

Condition ~16! is identical to applying an operator wit
unit determinant from the left-hand side of Eq.~17! and then
taking its determinant,

detF S 1 A
0 1 D S 12T11 2T12

2T21 12T22
D G5detS 12T I 0

2T21 12T22
D 50,

~18!

where the two identities in Eq.~15! have been used. Conse
quently, to find an eigenvalue 1 forT II(E) is equivalent to
finding the zeros of the determinant

det@12T II~E!#5det@12T I~E!#g~E!, ~19!

where g(E)5det@12T22(E)# is a bounded function, suc
that ug(E)u,`, because det@12T(E)# in Bogomolny’s
method is not singular.

This factorization formula relates the quantization con
tion det@12T I(E)# on S I to the quantization condition
det@12T II(E)# on S II . Notably,T I andT II are the transfer
05620
-

operators ofS I5S1 and S II5S1øS2, respectively. How-
ever,T22 is not the transfer operator ofS2, becauseT22 does
not include all trajectories fromq28PS2 to q2PS2, but only
those fromq28 to q2 that do not crossS1. Moreover,T12 is
nonzero because not all trajectories starting fromS2 come
back toS2 without crossingS1 in between, unlessS1 and
S2 are in different parts of a nonconnected system. Toge
with the second equality of Eq.~15!, it implies thatT22 does
not have eigenvalue 1 andg(E) is nonzero. Therefore, al
zeros of det@12T II(E)# in Eq. ~19! arise from det@1
2T I(E)# and vice versa. Consequently, the quantizat
conditions on different PS’s determine exactly the same
ergy spectrum. Furthermore, det@12T II (E)# and det@1
2T I(E)# are identical only ifg(E) is unity. In this case,
T22(E) vanishes and no trajectory connects two points onS2
without crossingS1, an example of which can be found i
Eq. ~27!.

In the general case in whichS I andS II are not connected
a sectionS8 connectingS I andS II can be chosen such tha
S5S IøS8øS II is connected. Applying Eq.~19!, the deter-
minant forS can then be factorized as

det@12T~E!#5det@12T I~E!#gI~E!

5det@12T II~E!#gII~E!,

with certain nonzero functionsgI(E) and gII(E). Finally a
general formula that relates various quantization conditi
on arbitrary PS’s is obtained,

det@12T II~E!#5det@12T I~E!#G~E!, ~20!

with the nonzero bounded functionG(E)5gI(E)/gII(E).
Notably, Bogomolny’s quantization condition~3! holds un-
der the semiclassical assumption. However, the deriva
from Eq. ~3! to formulas~19! and ~20! is only a reformula-
tion of Eq. ~3! without extra approximations besides th
semiclassical approximation.

IV. EQUILATERAL TRIANGULAR BILLIARD

A. Transfer operators for the classical billiard

As an example of Eq.~19!, consider an equilateral trian
gular billiard B bounded by three sidesS15p1p2, S2

5p2p3, and S35p3p1 with corners p1(0,0), p2

(21/2,A3/2), andp3(1/2,A3/2), as shown in Fig. 2~a!. Let
S I5S1 be a PS andsP@0,1# be the local coordinate onS I;
that is,s represents the distance from the originp1 to a point
q(s)PS I. In Cartesian coordinates, the pointq(s) is at q
(2s/2,A3s/2).

The first step in defining the transfer operator onS I is to
determine all trajectories fromq8(s8)PS I to q(s)PS I. The
question is equivalent to asking how many images of
object at positionq an observer at positionq8 can detect if
the observer stands inside triangleB in Fig. 2~a!, with two
mirror walls S2 and S3. Five images are atq5qn with n
51,2, . . . ,5 on fivesides of the hexagon in Fig. 2~a!. The
distancesqnq8 to q8 equal the lengthsl n of the five trajec-
tories fromq8 to q in B. For example, the trajectory fromq8
2-3
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FIG. 2. ~a! For S I, five trajectories~dashed lines! from q8 to
five imagesqn of q, with length unitL in Eq. ~25!. ~b! For S II , one
trajectory fromq8 on S1 to q on S1 and two trajectories fromq8 on
S1 to q on S2.
05620
to q plotted as a solid line in Fig. 2~a!, has the same lengthl 2

asq2q8. The Maslov indexn for this trajectory is 6, because
for a free particle in a billiard system,n is double the number
of reflections at the billiard boundary@10#. Table I lists the
locations ofqn and their Maslov indicesn. Thus, the length
l n , the actionS(qn ,q8,E)5A2mEln , wherem is the mass
of the particle, and]2S(qn ,q8,E)/]qn]q8 of all trajectories,
can be determined. Taking all these quantities into acco
the kernel of the transfer operator for the PSS I is

TI~q,q8!5k11~q,q8!, ~21!

wherek11(q,q8) is the special casea5b51 of the general
form
TABLE I. The initial pointsq8 on S j , the imagesqn of final pointq on S i , and the Maslov indicesn of
various kinds of trajectories through Poincare´ sectionsS I, S II , andS III in Fig. 2.

PS q8(s8)P S j Imagesqn(s) of q(s)PS i n

S I S2s8

2
,
A3s8

2 D
S1

q1S2s

2
,
2A32A3s

2 D
S1 4

q2~s,A3! S1 6

q3S32s

2
,
A31A3s

2 D
S1 8

q4S32s

2
,
A32A3s

2 D
S1 6

q5~s,0! S1 4

S II S2s8

2
,
A3s8

2 D
S1 q1(s,0) S1 4

q2S2s23

2
,
A3

2 D
S2 2

q3S32s

2
,
A3~s21!

2 D
S2 4

S2s823

2
,
A3

2 D
S2

q4S2s

2
,
A3s

2 D
S1 2

q5(s,0) S1 4

q6S32s

2
,
A3~s21!

2 D
S2 4

S III S2s8

2
,
A3s8

2 D
S1

q1S2s23

2
,
A3

2 D
S2 2

q2S32s

2
,
A3~32s!

2 D
S3 2

S2s823

2
,
A3

2 D
S2

q3S2s

2
,
A3s

2 D
S1 2

q4S32s

2
,
A3~32s!

2 D
S3 2

S32s8

2
,
A3~32s8!

2 D
S3

q5S2s

2
,
A3s

2 D
S1 2

q6S2s23

2
,
A3

2 D
S2 2
2-4



th

,

o
th

tu

e
b
ct
,

cal

or
at

lls.

y
or

the
rt

r

-

QUANTIZATION CONDITIONS IN BOGOMOLNY’S . . . PHYSICAL REVIEW E 66, 056202 ~2002!
kab~q,q8!5 (
class traj

AU]2S~q,q8,E!

]q]q8
U

~2p i\!1/2

3exp@ iS~q,q8,E!/\#2~ inp/2!, ~22!

where the sum runs over all trajectories fromq8PSb to q
PSa with a,bP$1,2,3%.

For the second PS, selectS II5S1øS2. As in the previ-
ous case, determining all trajectories fromq8(s8)PS II to
q(s)PS II with sP@0,2# on S II , is equivalent to determining
all images of an object atq in the triangle in Fig. 2~b! with a
mirror wall S3. The corresponding transfer operator has
kernel,

TII~q,q8!5 (
a,bP$1,2%

kab~q,q8!xa~q!xb~q8! ~23!

with

xa~q!5H 1 for qPSa

0 for q¹Sa .

For q,q8PS1 , TII(q,q8) consists of only one trajectory
which is reflected byS3, and is as long asq1q8 in Fig. 2~b!.
For q5q2PS2 andq8PS1 , TII(q,q8) is comprised of two
trajectories that are as long asq2q8 andq3q8. Table I lists all
these and other trajectories forS II .

The following section is the most conventional choice
PS for a billiard system, namely, the whole boundary. For
billiard considered here, this section equalsS III

5S1øS2øS3. By a similar argument as forS II , the kernel
of the transfer operator forS III is

TIII ~q,q8!5 (
a,bP$1,2,3%

kab~q,q8!xa~q!xb~q8!, ~24!

to which six trajectories that connect pointsq8 and qn and
are given in Table I contribute.

B. Semiclassical quantization

The exact energies of the equilateral triangular quan
billiard are

E5
8\2p2~n21m22mn!

9mL2
, ~25!

with m,n51,2, . . . and m>2n @9#. With \51, m
58p2/9, and side lengthL51, the quantum energies ar
3,7,12,13,19,21, . . . . These energies are approached
means of the transfer operator method, by dividing a sele
PSS into n cells of widthD5 length(S)/n. Under the basis

c j~q!5H 1/AD for qP j th cell

0 otherwise,
05620
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the transfer operator is discretized into ann-dimensional ma-
trix Tk j

(n) with entries

D

~2p i\!1/2 (
class traj

AU]2S~qk ,qj8 ,E!

]qk]qj8
U

3exp@ iS~qk ,qj8 ,E!/\#2~ inp/2!

whereqj is the center of thej th cell.
For E5Eexact, the quantization condition,

det@12T~E!#5 lim
dim n→`

det@12T(n)~E!#

should be zero in principle. However, by the semiclassi
approximation, the minima ofudet@12T(E)#u are not exactly
zero, but only very close to it. Moreover, the locationsE of
these minima deviate slightly from the exact energiesEexact.
For the first exact energy, 3, the minima ofudet@12T(E)#u
on different PS’sS I, S II , and S III are located aroundE
52.9993, 3.08, and 3.27, respectively, with 100 cells. F
the 298th exact energy, 1008, the minima are located
1008.18, 1008.47, and 1008.85, respectively, with 500 ce
The best approximation is obtained usingS I and the worst is
obtained usingS III .

The extent to which formula~19! is satisfied in the ap-
proximation is examined by rewriting Eq.~19! as

det@12T II~E!#

det@12T I~E!#
5g~E!5det@12T22~E!#. ~26!

For E'Eexact, two determinants in the ratio are small. A tin
semiclassical error, such as the error of minimum values
locations of these minima, induces a large fluctuation in
ratio of Eq.~26!, and yields peaks, as shown in Fig. 3. Apa
from these minima, ratio~26! is close to the function det@1
2T22(E)#'0.83, as predicted in formula~19!.

In the semiclassical limit\→0, or equivalently, whenE
is very large, the deviation in Eq.~26! is expected to de-
crease. However, if det@12T I(E)# approaches zero faste

FIG. 3. The peaks of the ratio~26! appear near the exact quan
tum energies 12, 13, and 19 where the determinantudet@1
2T(E)#u has minima close to zero, with energy unit 8\2p2/9mL2

in Eq. ~25!.
2-5
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than det@12T II(E)# for large E'Eexact, then the peaks in
Fig. 3 will not disappear as\→0. Only the width of the
peaks decreases. That is, in general, the convergence o
first equality in Eq.~26! in the semiclassical limit\→0
could be nonuniform.

The determinants on the sectionsS III andS II in the trian-
gular billiardB are compared by replacingT II(E) in Eq. ~26!
by T III (E), T I(E) by T II(E), andT22(E) by T33(E) to obtain

det@12T III ~E!#

det@12T II~E!#
'det@12T33~E!#51. ~27!

The determinant det@12T33(E)# is 1 because in the triangu
lar billiard, no trajectory runs fromq38PS3 to q3PS3 with-
out passingS II5S1øS2 and therefore the operatorT33 van-
ishes. In this case, the quantization conditions fromS III and
S II are identical.

V. CONCLUSION

According to the theory of Bogomolny’s transfer opera
method, the zeros of the Fredholm determinant~3! on a Poin-
cs

05620
the

r

carésection of a classical dynamical system are the disc
energies of the corresponding quantum system. This dete
nant serves as a semiclassical quantization condition.
quantization conditions on different sections are not uniq
since the choice of the Poincare´ section is arbitrary. How-
ever, these conditions can be explicitly related by two f
mulas ~19! and ~20!, presented in this work. These exa
formulas offer an argument as to why different quantizat
conditions constructed on different classical trajectory s
ments determine exactly the same energy spectrum of
corresponding quantum system. The formulas presented
are directly reformulated from Bogomolny’s quantizatio
condition ~3! without further assumption besides the sem
classical approximation.
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