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Quantization conditions in Bogomolny’s transfer operator method
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Bogomolny’s transfer operator method plays a significant role in the study of quantum chaos, along with
other well known methods like Gutzwiller’s trace formula and the dynamical zeta function, which generalize
the Einstein-Brillouin-Keller quantization rule from integrable systems to chaotic systems. According to the
theory, the Fredholm determinant of the transfer operator, defined on a Posection of a classical physical
system, provides a quantization condition to the energy spectrum of the corresponding quantum system. This
study presents two factorization formulas, which relate different quantization conditions defined on different
classical trajectory segments. These explicit relations answer the question of why all these classical quantiza-
tion conditions determine exactly the same energy spectrum of the corresponding quantum systems. As an
example, these formulas are illustrated in the equilateral triangular billiard.
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[. INTRODUCTION somek-dimensional physical systerffor examples of vari-
ous systems, see Refd1-19). Select a Poincarsection
A way to generalize the Wentzel-Kramers-Brillouin and (PS X in the configuration space of this system, such that
the Einstein-Brillouin-Keller(EBK) quantization rules from almost all classical trajectories pass this section. The transfer
integrable systems to chaotimonintegrablg systems had operatorZ(E) is defined semiclassically as the integral op-
been sought for a long timgl]. In the 1950s, without the erator[10]
motivation of quantum chaos, Selberg derived his famous
trace formulg[2]. This formula describes the discrete quan-
tum energy spectrum of a free particle on the modular sur- ﬂE)llf(Q)Zf T(q,9",E)¢(q’)dq’, (1)
face on which the dynamics of the particle’s motion is >

strongly chaotid1]. Shortly thereafter, Sinai and Sm4dlg] : : , .
realized that this formula could be interpreted as a sum oveér1Ct|ng on some functiog/(q') on 2. The integral kernel

all periodic orbits of the particle motion on the surface. Since > ;
then, the relation between the energies of a quantum system-l-(q q'.E)= z 1 \/ té’ S(a.9".E)
and its classical chaotic dynamics has become much clearer '~ '~ casstraj (2rifi) k12 4qdq’

[1]. This relation is essentially involved in many newly de- ] )
veloped quantization rules in the last decades. Examples in- xexdiS(q,q",E)/fi—ivmi/2] (2
clude the transfer operator method due to Rugleon the ] ) ] ) )
modular surfacg5—7] and semiclassical methods for generaliS defined as the sum over all possible classical trajectories
physical systems, such as Gutzwiller’s trace fornf@land ~ from the initial pointq’ X to the final pointqe X in the
the functional determinari®]. A common point of all these ~configuration space at enerdy. These trajectories cannot
methods is that the quantization conditions are establisheli@ve other crossing points throughbetweenq’ andg, in
from the periodic orbits of the dynamical systems. the sense that they cannot p%qn th.e same direction as
Another quantization method based on classical dynamicey passy’. For example, selecting' in Fig. 1(a) as a PS,
is the transfer operator method due to Bogomdlhg]. Un-  the next crossing point after the initial poigt is g3, notq’.
like other methods, the quantization condition in this methodl'he functionS(q,q’,E) in Eg. (2) is the action of the trajec-
is not based on periodic orbits but only on segments of cettory from g’ to g at energyE and the Maslov index is
tain trajectories in classical dynamics. The freedom of trajectelated to the number of points, at which semiclassical ap-
tory choice is such that the quantization conditions in thisProximation is not valid10]. For a free particle that moves
method are not unique and, in fact, infinitely many different
conditions can exist. From a classical perspective, one might
speculate how all these different quantization conditions, de-
fined on independent classical trajectories, determine exactly
the same energy spectrum. This work provides a simple ar-
gument with exact formula$l9 and (20) to answer this
guestion. Finally, a numerical test that confirms these formu-
las on the equilateral triangular quantum billiard is discussed.

Il. TRANSFER OPERATOR METHOD FIG. 1. (@ On the PSS!, the next crossing point aftey; is g
(not q'). Moreover, the transfer operators & and 3" can be

Bogomolny’s transfer operator method is briefly intro- related by Green functions in Edg4). (b) The trajectory of the
duced here. Consider a particle with enefgymoving in  kernelT3(q;,q;) in Eq. (10) passes through , di,, Gi, andq;.
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in a two-dimensional billiard system, the Maslov index is structed on different PS’s should be exactly identical, is non-
double the number of reflections of the trajectory at the bil-trivial. This question can be clarified using the following
liard boundary [10]. The partial derivative factorization formula.

3%S(q,q',E)/9qaq’ in Eq. (2) is a square matrix of dimen-

sion 2 fork=3 and a scalar fok=2, where the notation IIl. DETERMINANT FACTORIZATION

“det” before the derivative can be omitted, e.g., Eg2). In ) ) | _

this approximation, the kern€®) is unitary and satisfies the “Con5|der first a transfer operat@t defined on some PS

relation 3"=%,U3%,, composed of two connected, but nonoverlap-
ping, subsection¥; and,,. The operatofl), split into two
" "ot " 2 ’ parts’
| Taa e ear-T@ £,
7*'¢(q)=f T”(q,q’)w(q’)dq’+f T'(q,02) ¢(g3)dag,
where the connection of the trajectories frathto q” and 2 ! R s, ? 2

from q” to g must be smooth a}”; that is, the direction of (6)
the incoming trajectory a” and the direction of the outgo-

ing trajectory aty” are the same. Moreover(q,q’,E) van- can be expressed as

ishes if no trajectory that fulfills this condition exists framh ¥(qy) Ti1 Tio\ [ (A1)
to g at energyE. According to Bogomolny’s theorj10], in 7”( ) :( )( ) @
the semiclassical limit.— 0, the zeros of the Fredholm de- ¥(92) T T | 9(Q2)
terminant with g;,01 €31, 02,05 25, and
def1—7(E)]=0, )

= Q) = g q Ndal i
of the transfer operatof(E) are the energies of the corre- Zijiay) fij (Gi.ap)¥@pday, Tje{l.2), @

sponding quantum system yielding a quantization condition.

The choice of the PS is arbitrary, as long as almost allvhere #(q;) is some function defined ok;. Notably, the
trajectories run through this section. Given two sectidhs integral in Eq.(8) is conventionally defined as an integral
and3", Ref.[10] argues that the kernelE and T" of the  operator by using the notatiah (q;) =[Z;; #1(q;), indicat-
corresponding transfer operatdf$ and 7" are related by ing that[7;;¢] is a function ofg;. The modified notation

Ti;(q;) in Eq. (8) does not refer to a function af;. In-
* stead, this notation makes it possible to expresqd@as the
T'(d4,02,E)= L|J2|G43Tl(q3'ql'E)G21dq3dq1' “) matrix equation Eq(7) and shorten many equations in the
following discussion. As in Eq(2), the kernelT"(q;,q/) in
in which G;;=G(q;,q;,E) is the Green function corre- Eq.(8) consists of trajectories fromy to g; without crossing

sponding to the transition from a poigf on X' to a pointg; 3, and 3, in between, in the sense of the crossing point
on X" at energyE without other crossing points through defined above.

or 3" in between(Fig. 1@)], whereG; represents the com-  Next, 3'=3, is selected as a new PS with the corre-
plex conjug_ate of5;; . Since the Green function is a unitary sponding transfer operatdf and its kernelT'(q;,94). The
transformatior{10], aim is to determine the relation between kerrigigy;,q;)

andT"(q;,qy). Accordingly, T'(d,,q;) is written as a sum
J' G(q',9",E)G(q",q,E)*dg’=8(q’ —q), (5) over all trajectories frong; to g,
)

T'and7" are similar operators under different bases, and the T (1,0 =2, T"(a;,9), 9)

corresponding determinants in E®) are identical. n=1
This argument is valid only when the Green functions in ) "o .

Eq. (4) can be found. However, this condition is not met in erlere t,he first 'FermT(ql,ql) _|n the sum is the k(_arnel

general. For example, a trajectory from, could have 1 (d1.d1) ,Of 711 in Eq. (8), which corresponds to trajecto-

crossed' many times before arriving a, if 3' and3" are  fies fromq; to g, without crossing,. For 1<n, the com-

not close enough. Accordingly, the Green funct®ty in Eq.  Position kernel

(4), defined on classical trajectories, has more than one

crossing point or®', which contradicts the requirement on T”(Qlﬂi):f ™90 )Ta a0 ) ...

Gj; . Thus, the transfer operators on the new and old sections 2 ot nmhone2

are no longer similar operators and their Fredholm determi- ,

nants are ?n general di?‘ferent functions. From the quantum ><T"(in,qi1)T”(qil,q1)dqin71 . do,

mechanical perspective, these functions should clearly have (10)

the same zeros, because these zeros correspond to a unique

energy spectrum. However, from the classical perspectivesorresponds to the trajectories that cross the seciigm

the reason why all the zeros of different functioi3 con-  —1 times am;, e, withl=1,... n—1. Figure 1b) shows
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an example ofT3(q,,q;) with a trajectory that crosses,
twice. Consequently,T'(q,,q1) in Eq. (9) is related to
T"(gs,q1) in Eq. (8) by

T“(ql,qi>+n22T“(ql,qD:T'(ql,qi). (11)

Defining a new operatad with the kernel=,_,T"(q;,05),
by replacingqg; in Eq. (10) by g5, yields the identity,

o

2 Ty~ 2 Ty, =T'(a1,05). (12

The kernels ofAd7,, and . A7,, are then, respectively,

J > T'(1,95) Tar(dy,a1)das= >, T"(qy,94),
3,n=1 n=2
(13
] T“(q1,qﬁ)Tzz(qZ,qé)dq£=n22 T"(q1,95),
(14

3,n=

which consist of trajectories fromy , respectivelygs to g,
crossings,, at least once. Using the definition gf7,, and
AT,, in Egs. (13) and (14), kernel equationgll) and (12)
yield the operator equations

Tt ATy=T" and A(1-Tp)=Tp,. (15

The necessary and sufficient condition BH(E) to have
an eigenvalue 1 at sonteis

def1-7"(E)]=0, (16)
where, according to Ed7), one has
1-T1n  —T || (0)
1-7T(E =( ) ) 1
=T ®W@=| 2 ) @

Condition (16) is identical to applying an operator with
unit determinant from the left-hand side of Ef7) and then
taking its determinant,

=det(

sl

where the two identities in Eq15) have been used. Conse-
quently, to find an eigenvalue 1 fa&f'(E) is equivalent to
finding the zeros of the determinant

1-7
—Tn

1-Ty
—Tn

0

—:rlz) )_0
1-Tp
(18)

1-T

de{1-7"(E)]=def1-T'(E)]9(E), (19

where g(E)=def 1—7,5(E)] is a bounded function, such
that |g(E)|<w«, because dpt—7(E)] in Bogomolny’'s
method is not singular.
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operators of2'=3, and>"=3,U3,, respectively. How-
ever,7,, is not the transfer operator &f,, becausé,, does
not include all trajectories from,e 3, to g, e X ,, but only
those fromg, to g, that do not cros&,,. Moreover,T;, is
nonzero because not all trajectories starting flBmcome
back to2,, without crossing; in between, unles¥; and
2., are in different parts of a nonconnected system. Together
with the second equality of E15), it implies that7,, does
not have eigenvalue 1 arg{E) is nonzero. Therefore, all
zeros of ddtl—7"(E)] in Eqg. (19) arise from ddtl
—T!'(E)] and vice versa. Consequently, the quantization
conditions on different PS’s determine exactly the same en-
ergy spectrum. Furthermore, fgt7"(E)] and deftl
—T'(E)] are identical only ifg(E) is unity. In this case,
Too(E) vanishes and no trajectory connects two point&en
without crossing>;, an example of which can be found in
Eq. (27).

In the general case in which' andX " are not connected,
a section®’ connecting®' and3" can be chosen such that
3>=3'U3’uU" is connected. Applying Eq19), the deter-
minant for>, can then be factorized as

def1-7(E)]=def1-T'(E)]g'(E)
=de{1-T"(E)1g"(E),

with certain nonzero functiong'(E) andg"(E). Finally a

general formula that relates various quantization conditions

on arbitrary PS’s is obtained,
def1—7"(E)]=def1-T'(E)]G(E), (20)

with the nonzero bounded functio&(E)=g'(E)/g"(E).

Notably, Bogomolny’s quantization conditiai3) holds un-

der the semiclassical assumption. However, the derivation

from Eq. (3) to formulas(19) and (20) is only a reformula-

tion of Eq. (3) without extra approximations besides the

semiclassical approximation.

IV. EQUILATERAL TRIANGULAR BILLIARD

A. Transfer operators for the classical billiard

As an example of Eq(19), consider an equilateral trian-
gular billiard B bounded by three sideX;=p;p,, 2,
=p,ops;, and Z3=pzp; with corners p,(0,0), p-
(—1/2,3/3/2), andp3(1/2,J/3/2), as shown in Fig.(@). Let
3'=3, be a PS ande[0,1] be the local coordinate oB';
that is,s represents the distance from the originto a point
q(s)e2'. In Cartesian coordinates, the poigts) is at q
(—s/2,\3s/2).

The first step in defining the transfer operatorXdhis to
determine all trajectories from’(s’) e 3! to q(s) e 3'. The
guestion is equivalent to asking how many images of an
object at positiong an observer at positioq’ can detect if
the observer stands inside triandein Fig. 2(a), with two
mirror walls 3, and 3 5. Five images are afj=q,, with n

This factorization formula relates the quantization condi-=1,2, . .. ,5 on fivesides of the hexagon in Fig(&. The

tion def1—7'E)] on X' to the quantization condition
def1—7"(E)] on 3". Notably, 7' and 7" are the transfer

distanceqy,q’' to q’ equal the lengths,, of the five trajec-
tories fromq’ to g in B. For example, the trajectory frogY

056202-3



CHENG-HUNG CHANG PHYSICAL REVIEW E66, 056202 (2002

to q plotted as a solid line in Fig.(3), has the same length
asg,q’. The Maslov index for this trajectory is 6, because,
for a free particle in a billiard systen,is double the number

of reflections at the billiard boundafyl0]. Table | lists the
locations ofq, and their Maslov indices. Thus, the length

l,, the actionS(q,,q",E)=+2uEl,, whereu is the mass

of the particle, an#?S(q,,,q’,E)/dq,0q" of all trajectories,
can be determined. Taking all these quantities into account,
the kernel of the transfer operator for the BSis

-0.5 0 0.5 1 1.5 ~ -05 0 0.5 1

| A ’
FIG. 2. (a) For 3!, five trajectories(dashed linesfrom q’ to T(a.a") =ku(a.9"), 2D

five imagesq, of g, with length unitL in Eq. (25). (b) For=", one
trajectory fromq’ on3,; to g on2,; and two trajectories from’ on

S, toqon3,. wherek;4(q,q") is the special case= =1 of the general

form

TABLE I. The initial pointsq” onX;, the imagesy, of final pointq on X, and the Maslov indices of
various kinds of trajectories through Poincaeztionss', 3", and3" in Fig. 2.

PS q'(s') e 3 Imagesq,(s) of q(s) e 3; v
-g 3¢’ —s 23-3s
3 (TT) 3 ql(? 2 ) 5
G(S/3) p
3—s 3+3s
s
3—s \/3—/3s
%(T’T) s 6
0s(s,0) b
=%
s 22 3 q1(s.0) 2y 4
2s—3 \/§
QZ(T'T) S, 2
3-s \3(s—1)
q3(7‘ 2 ) 3, 4
25 -3 43 -s \/§s
( 2 ’7) 3, %(7’7) 3, 2
gs(s,0) 3 4
3-s \3(s—1)
qﬁ(T’T) s, 4
—g 3¢’ 25-3 3
s (TT) 3, “1(77) 3, 2
3-s \/5(3—3)
7T,
2s'-3 \/5 -s \/§s
( 2 ’7) 3, q3(7’7) 3, 2
3—s \3(3-5s)
70
3-¢ \/§(3—s’) -s \/§s
(TT) S q5(7‘7) 3, 2
25-3 |3
qs(T'?) s, 2
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2 ’ i j ' j - '
(}] S(qu vE) 6r— -. det(1—T'$E))
V 9999’ -== det(1-T"(E)) »

K q')= 51— det(1-T "(E))/det(1-T '(E))
s(00)= 2 Q@im™ e det(1-T,,(E)) ~ 0.83

xexdiS(q,q",E)Aa]—(ival2), (22 ﬂT
g

where the sum runs over all trajectories frathe % 5 to q
e, with «,8e{1,2,3.

For the second PS, seleét'=3,US,. As in the previ-
ous case, determining all trajectories frap(s’) X" to
q(s) e 3" with se[0,2] on 3", is equivalent to determining
all images of an object afin the triangle in Fig. &) with a
mirror wall X 5. The corresponding transfer operator has the

Energy E

kernel, FIG. 3. The peaks of the rati@6) appear near the exact quan-
tum energies 12, 13, and 19 where the determinjatefl
, , , —17(E)]| has minima close to zero, with energy unfiBr2/9uL?2
T'(9.0")= BEﬂ , Kas@Axal@xp(@) 23 in'eq. (25
with the transfer operator is discretized intoradimensional ma-

trix T{} with entries

1 f E)|
- for qe3, A s 7*S(qx.q; ,E)
0 for qefza- (Zwiﬁ)llz class traj &qkaqj,

For q,0’ 3, T"(q,q’) consists of only one trajectory, X exeliS(0. . E)/i ] (ivml2)
which is reflected by, and is as long ag,q’ in Fig. 2(b).
Forg=q,e3, andq’ €3, T"(q,q") is comprised of two  whereq; is the center of th¢th cell.
trajectories that are as long qgaqlu’ andqsq’. Table | lists all For E=Eexac, the quantization condition,
these and other trajectories far'. .

The following section is the most conventional choice of detl_ﬂE)]:dmll'nm wde[l—T(”)(E)]
PS for a billiard system, namely, the whole boundary. For the -

billiard considered here, this section equal®"  should be zero in principle. However, by the semiclassical
=3,U3,UX;. By a similar argument as fa", the kemel  approximation, the minima dtlef 1— 7(E)]| are not exactly
of the transfer operator fat" is zero, but only very close to it. Moreover, the locatidh®f
these minima deviate slightly from the exact enerdigsct.
o , , For the first exact energy, 3, the minima|oef1—7(E)]|
T (a.q )_aBeE{MS} Kap(A:aDX(DX5(A"). 29 o different PS's3!, 3, and 3" are located around
c =2.9993, 3.08, and 3.27, respectively, with 100 cells. For
to which six trajectories that connect points andq, and  the 298th exact energy, 1008, the minima are located at
are given in Table | contribute. 100818, 100847, and 100885, respeCtiVer, with 500 cells.
The best approximation is obtained usifjand the worst is
obtained usings".
The exact energies of the equilateral triangular quantum The extent to which formuld19) is satisfied in the ap-

B. Semiclassical quantization

billiard are proximation is examined by rewriting E¢L9) as
8#272(n>+m?—mn) 29 def1-T7"(E)] (E)=def1—ToAE)] 26
= , —_—= =defl- .
9uL? de{1-T(E)] ° 2
with mn=1,2,... and m=2n [9]. With %=1, u For E~Egy, two determinants in the ratio are small. A tiny

semiclassical error, such as the error of minimum values or
3,7,12,13,19,21 ... These energies are approached bylocatlons of these minima, induces a large fluctuation in the

means of the transfer operator method, by dividing a selecte tio of Eq.(26), and yields peaks, as shown in Fig. 3. Apart

PSS into n cells of widthA = length()/n. Under the basis, T0M these minima, rati@26) is close to the function dgt
ol W gth) ! —T,5(E)]~0.83, as predicted in formuld.9).

In the semiclassical limit—0, or equivalently, whert
is very large, the deviation in Eq26) is expected to de-
otherwise, crease. However, if det—7"'(E)] approaches zero faster

=872/9, and side length.=1, the quantum energies are

1A for gejth cell
i(q)= 0
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than deftl1—7"(E)] for large E~Eqy,e then the peaks in
Fig. 3 will not disappear ag—0. Only the width of the

PHYSICAL REVIEW E66, 056202 (2002

caresection of a classical dynamical system are the discrete
energies of the corresponding quantum system. This determi-

peaks decreases. That is, in general, the convergence of thant serves as a semiclassical quantization condition. The

first equality in Eq.(26) in the semiclassical limith—0
could be nonuniform.

The determinants on the sectioB¥ and3" in the trian-
gular billiardB are compared by replacirg'(E) in Eq. (26)
by T"(E), T'(E) by 7"(E), andT,,(E) by Za«(E) to obtain

def1-7"(E)]

deri ey ~ell TdEI=1

(27)

The determinant det —735(E) ] is 1 because in the triangu-

lar billiard, no trajectory runs frong; e X5 to gz € 2 3 with-
out passing"=3,U3, and therefore the operat@; van-
ishes. In this case, the quantization conditions fibth and
3" are identical.

V. CONCLUSION

gquantization conditions on different sections are not unique,
since the choice of the Poincasection is arbitrary. How-
ever, these conditions can be explicitly related by two for-
mulas (19) and (20), presented in this work. These exact
formulas offer an argument as to why different quantization
conditions constructed on different classical trajectory seg-
ments determine exactly the same energy spectrum of the
corresponding quantum system. The formulas presented here
are directly reformulated from Bogomolny’s quantization
condition (3) without further assumption besides the semi-
classical approximation.
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